Bases of the Quantum Cluster Algebra of the Kronecker Quiver

نویسندگان

  • MING DING
  • FAN XU
چکیده

We construct bar-invariant Z[q 1 2 ]−bases of the quantum cluster algebra of the Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the cluster algebra of the Kronecker quiver in the sense of [14],[4] and [11] respectively. As a byproduct, we prove the positivity of the elements in these bases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

Multiplicative properties of a quantumCaldero- Chapoton map associated to valued quivers

We prove a multiplication theorem of a quantum Caldero-Chapoton map associated to valued quivers which extends the results in [8][6]. As an application, when Q is a valued quiver of finite type or rank 2, we obtain that the algebra A H |k|(Q) generated by all cluster characters (see Definition 1) is exactly the quantum cluster algebra E H |k|(Q) and various bases of the quantum cluster algebras...

متن کامل

On the Cardinalities of Kronecker Quiver Grassmannians

Abstract. We deduce using the Ringel-Hall algebra approach explicit formulas for the cardinalities of some Grassmannians over a finite field associated to the Kronecker quiver. We realize in this way a quantification of the formulas obtained by Caldero and Zelevinsky for the Euler characteristics of these Grassmannians. We also present a recursive algorithm for computing the cardinality of ever...

متن کامل

Quiver Varieties and Cluster Algebras

Motivated by a recent conjecture by Hernandez and Leclerc [30], we embed a Fomin-Zelevinsky cluster algebra [20] into the Grothendieck ring R of the category of representations of quantum loop algebras Uq(Lg) of a symmetric Kac-Moody Lie algebra, studied earlier by the author via perverse sheaves on graded quiver varieties [48]. Graded quiver varieties controlling the image can be identified wi...

متن کامل

On quantum cluster algebras of finite type

We extend the definition of a quantum analogue of the CalderoChapoton map defined [17]. When Q is a quiver of finite type, we prove that the algebra A H |k|(Q) generated by all cluster characters (see Definition 1) is exactly the quantum cluster algebra E H |k|(Q).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010